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            Abstract

            
               
Artificial intelligence (AI) has made significant strides in various fields, particularly in ophthalmology, in recent years.
                  This article examines the state-of-the-art in the domain of ophthalmology in order to define the vision that will allow us
                  to advance scientifically in this digital age. The rigorous yet approachable introduction to the algorithms that serve as
                  the foundation for all current AI applications opens the paper. Subsequently, an extensive assessment of the primary AI uses
                  in ophthalmology is given, including subjects like diabetic retinopathy, age-related macular degeneration, glaucoma, and retinopathy
                  of prematurity. The assessment concludes with a brief discussion of the prospects and difficulties this industry may face
                  in the future.
               

            
         

         
            Keywords

            Machine learning, Deep learning, Convolutional neural networks, Keratoconus, Diabetic retinopathy, Glaucoma, Cataract surgery

         

         
            © This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
            credited.
            
         

         

      

      
         
               Introduction

            In their treatise "A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence," John McCarthy, Marvin
               L. Minsky, Nathaniel Rochester, and Claude E. Shannon first used the phrase artificial intelligence (AI) on August 31, 1955.1 It can be defined as a software/machine simulation of human intelligence. It is a computer system's capacity to demonstrate
               cognitive abilities.2 Alan Turing's renowned Turing test, which he conducted in 1950, marked the first scientific step toward the creation of sentient
               machines. To ascertain whether the interviewee's intelligence is artificial or human, open-ended interview questions were
               used. Within predetermined bounds, genuine machine intelligence had been achieved if this distinction could no longer be made.
               
            

            Deep Learning (DL) and Conventional Machine Learning (CML) are two types of machine learning, which comes under the purview
               of artificial intelligence.3 Machine learning is the process by which computerized computers use algorithms to draw conclusions from a variety of data
               patterns for self learning without explicit supervision. Deep Learning, on the other hand, uses several processing layers
               to draw out more advanced features from input data sets. DL algorithms are called "black boxes."4 The usage of "Deep Neural Networks (DNN)" and "Convolutional Neural Networks (CNN)," which are inaccessible to human interpretation,
               is the rationale behind this implication. The realm of pattern recognition has been completely transformed by this. CNN is
               the most often used algorithm. The most popular CNN architectures are Alex Net, VGG,5 ResNet, and GoogleNet.
            

            The onset of the fourth Industrial Revolution, characterized by the integration of cyber-physical systems, includes the widespread
               application of AI. One of its cogwheels is the applications of AI  in healthcare. The medical business has benefited from
               the application of AI in radiography, pathology, microbiology, electronic medical records, and surgery.6

            Ophthalmology has also embraced AI, with applications ranging from fundus photography and visual field imaging to optical
               coherence tomography.7 This has made it easier to design efficient and precise screening, grading, and treatments for retinal illnesses. Recent
               publications have extensively covered the utilization of AI in diagnosing and treating various eye disorders. Among the conditions
               that have been extensively studied are keratoconus, cataract and intraocular lens (IOL) power calculation, refractive treatments,
               diabetic retinopathy,8, 9, 10 retinopathy of prematurity, age-related macular degeneration (AMD),11 glaucoma, ocular surface neoplasms and strabismus.
            

         

         
               Applications of AI in Ophthalmology

            
                  Corneal refractive surgery

               When corneal cross-linking is available, early keratoconus (KC) identification can help halt or delay the disease's progression.12 However, because there is no distinct corneal finding and visual acuity is still acceptable, diagnosing KC can be difficult
                  clinically in its early stages. In corneal refractive surgery, undetected KC is known to have a strong correlation with iatrogenic
                  keratectasia.13, 14 Preoperative screening and assessment need to be more precise given the growing significance of refractive surgery and its
                  ability to live up to patient expectations. As a result, using artificial intelligence to assist in diagnosis and surgery
                  might be required. AI helps in KC screening as well as disease classification on a grading scale.15  
               

               Kamiya et al. included 239 age-matched healthy eyes and 304 keratoconic eyes [Amsler-Krumeich grades 1 (108 eyes), 2 (75 eyes),
                  3 (42 eyes), and 4 (79 eyes)]  in a diagnostic accuracy study on the utility of deep learning in the diagnosis of Keratoconus.
                  Using the arithmetical mean output data of six corneal tomographic maps,16 deep learning showed an accuracy of 0.991 in differentiating between normal and keratoconic eyes. It was discovered that
                  fifteen AI methods were equivalent to the KISA% index, the Klyce/Maeda Keratoconus Index, and other non-artificial intelligence
                  indexes. 
               

               When it comes to segregating eyes with subclinical keratoconus from healthy eyes, an automated classification technique based
                  on machine learning and using data from Scheimpflug cameras and UHR-OCT (Ultra-High Resolution-Optical Coherence Tomography)
                  imaging performed remarkably well.15  Research has brought out that using Artificial Neural Networks (ANN) to direct the placement of Intra-Corneal Ring Segments
                  (ICRS) improves optical quality, decreases spherical equivalent, and increases visual acuity in patients with surgical keratoconus.17 
               

            

            
                  Dry eye disease (DED)

               Using machine learning techniques, the capacity of tear film osmolarity to differentiate between dry eyes and other states
                  has been measured. Patients with dry eyes (20) and controls (20) were evaluated in a study by Cartes et al. Every five minutes,
                  the osmolarity of each eye was measured thrice. Variability was determined by calculating the difference between the highest
                  and lowest readings for each eye. The study findings indicated that both the mean osmolarity and osmolarity variability of
                  the dry eye group were significantly higher compared to those of the control group. Consequently, machine learning demonstrated
                  good accuracy in classifying dry eyes, with increased tear osmolarity variability identified as a characteristic feature of
                  this condition.18 
               

            

            
                  Cataract surgery

               The World Health Organization (WHO) projected that 32 million cataract surgeries would be performed yearly by 2020. Only if
                  the IOL is chosen correctly may cataract surgery progress to become a true refractive procedure. The objective is to minimize
                  postoperative refractive error and maximize precision in order to attain emmetropia. A commonly acknowledged goal for a refractive
                  outcome following surgery is to remain within 0.50 D of mild myopia or emmetropia as demands rise. Achieving this objective
                  is only reliably accomplished around 70–80% of the time when using a particular unoptimized formula. Moreover, there has not
                  been evidence to demonstrate that a single, optimal technique for determining IOL power is universally effective across all
                  types of eyes.19 
               

               Because of this scarcity, most surgeons rely on the results of several IOL equations to choose which lens is appropriate for
                  their patients, which demands a large investment of time and resources in clinical workflow. There is a desire to streamline
                  this process, enhance the accuracy of IOL calculation methods, and integrate artificial intelligence with these formulas.
                  This has led to the development of the next generation of IOL formulas. The "entirely data-driven" Hill-RBF formula is one
                  of the pure AI-based formulas. A radial basis function (RBF) network, or neural network with a non-linear RBF activation function
                  in the neurons that make up its hidden layer, is the underlying algorithm. 
               

               The announcement of the idea of an IOL "super formula," or Ladas,20 in 2015 marked a significant advancement toward the incorporation of artificial intelligence in IOL computations. These newer
                  approach algorithms were represented in three dimensions, whereas IOL formulae from previous generations were thought of as
                  two-dimensional algebraic equations. This allowed for a 3-D analytical methodology to be used for a comparison and contrast
                  of the IOL formulas. An IOL "super surface" based on a combination of these equations was then built by taking the best elements
                  from each of the current IOL formulae. From this super surface, the "super formula" was created. The super formula can be
                  used to calculate eyes with both typical and unusual values for corneal thickness, axial length, and other factors to greatly
                  enhance the results of a single surgeon. Numerous extensive research projects are underway to assess this methodology's efficacy.
               

               An additional AI-driven formula for calculating intraocular lens (IOL) power is the PEARL-DGS thick lens formula. The theoretical
                  separation between the anterior surface of the IOL and the posterior surface of the eye is represented by the back-calculated
                  theoretical internal lens position (TILP), which is the basis for this formula.21 
               

            

            
                  Diabetic retinopathy

               A major worry for one-third of diabetics is diabetic retinopathy (DR), a condition that can result in blindness. The US Food
                  and Drug Administration (FDA) authorized an IDx AI algorithm in April 2018 so that it may be used to detect retinopathy in
                  conjunction with Topcon Medical's Fundus camera. Abramoff et al. conducted a study involving automated image analysis of 900
                  patients across ten primary-care sites. Two 45-degree digital images were taken of each patient, one of which was centered
                  on the macula and the other on the optic nerve. Subsequently, the Wisconsin Fundus Photograph Reading Centre (FPRC) assessed
                  stereo, wide-field fundus imaging and contrasted its interpretations with these images. From the two possible outcomes, one
                  was generated by an independent comparison program: (1) Referral to an eye care professional (ECP) if moderate or more severe
                  diabetic retinopathy (DR) is detected; (2) Reevaluation in 12 months if the results do not indicate moderate or more severe
                  DR. Based on the data, a new category called more than minimal DR (mtmDR) was created. It was found that at least one eye
                  must have diabetic macular edema (DME) and/or ETDRS level 35 or higher (which includes microaneurysms, hard exudates, cotton
                  wool patches, and/or tiny retinal hemorrhages) in order to be diagnosed with more than mild DR. In detecting more than mild
                  DR, the technique showed a sensitivity of 87.4% and a specificity of 89.5%.22

               DME anti-VEGF (anti-vascular endothelial growth factor) outcome prediction and dose optimization may also be accomplished
                  using this AI-based tool. Tufail et al. used the EyeArt Automated DR Detection System in a prospective multicentre cross-sectional
                  diagnostic study to identify mtmDR and, for the first time, vtDR (vision-threatening DR) without a doctor's assistance. It
                  was found to be secure and accurate.23 
               

               Moreover, a cross-sectional study enrolled 922 diabetic individuals prospectively. Using Remidio's fundus-on-phone (FOP) camera,
                  non-mydriatic (NM) retinal images of each eye were captured, with the disc and macula centered in the images. The photos were
                  processed offline, and the AI diagnostic (DR present or absence) was recorded. The AI's diagnosis was matched against the
                  picture diagnoses of five retina specialists. It was discovered that the Medios AI had a good specificity and sensitivity
                  for identifying referable DR utilizing NM retinal images. 24 
               

            

            
                  Glaucoma

               With an anticipated 76 million affected people globally in 2020 and a global prevalence of 3.5%, glaucoma is one of the main
                  causes of lifelong blindness.25 Early detection and intervention can help protect a person's vision. However, the early stages of glaucoma are asymptomatic
                  because vision loss does not occur until 20–50% of the corresponding retinal ganglion cells have been destroyed.26 
               

               AI is employed in various aspects of glaucoma management, including diagnosis, longitudinal analysis, structural-functional
                  relationships, knowledge discovery, and image enhancement. The assessment of optic nerve head (ONH) integrity forms the basis
                  for identifying glaucomatous damage. A mathematical representation of an optic nerve image as a three-dimensional pixel array
                  with length, width, and color channels (Red, Green, Blue) is used as the input layer in the DL process. The image is given
                  a title, such as "glaucoma" or "no glaucoma," that represents clinically confirmed ground truth. The next hidden layer then
                  uses the output of the previous hidden layer as its input. The image is categorized as a result of this procedure using the
                  features identified during DL.27 
               

               Muhammad et al. found, based on expert opinion, that a hybrid deep learning network achieved a 93% accuracy rate in categorizing
                  eyes as normal or glaucomatous using single-scan SS-OCT (Swept-source OCT) data.28, 29  Furthermore, a Machine Learning Computational (MLC) algorithm analyzing SS-OCT RNFL thickness maps through principal component
                  analysis (PCA) outperformed visual field global indices and SD-OCT (spectral domain-OCT) RNFL regional thickness measurements.
                  This MLC algorithm achieved an AUROC (Area under the Receiver Operating Characteristics curve) of 0.95 for identifying stereophotograph-defined
                  glaucoma. Additionally, the study revealed higher progression rates compared to the same measurements.30 
               

               From anterior segment OCT images, a naïve Bayes classifier accurately identified, with an accuracy of 85-89%, the primary
                  reasons of angle closure: pupillary block, plateau iris, thick peripheral iris roll, and excessive lens vault.31 
               

               Moreover, artificial intelligence has facilitated automated gonioscopy. A research endeavor encompassing 312 phakic individuals
                  engaged an independent test set comprising 39,936 SS-OCT scans (consisting of 128 SS-OCT meridional scans per eye), which
                  were meticulously analyzed. Participants aged over 50 years, devoid of any prior intraocular surgery, were sequentially recruited
                  from glaucoma centers. Both indentation gonioscopy and SS-OCT assessments were conducted in dim lighting conditions. To identify
                  angle-closure in gonioscopy, every individual's images underwent analysis utilizing a deep learning-based network employing
                  the VGG-16 architecture. According to Porporato et al., the results of this study showed that, when using an ideal cut-off
                  value of >35% for circumferential angle closure, the deep learning algorithm (DLA) achieved an area under the curve (AUC)
                  of 0.85 (95% confidence interval: 0.80 to 0.90), demonstrating a sensitivity of 83% and a specificity of 87% in detecting
                  gonioscopic angle closure.32 
               

               It is worthwhile to discuss the advantages of using AI for visual field interpretation. The first time an MLC was utilized
                  to differentiate between normal and glaucomatous visual fields was in 1994.28 The results of this analysis, which involved using an ANN with backpropagation to examine the absolute threshold sensitivity
                  at each field point, were consistent with expert opinion. This network could differentiate between healthy and glaucomatous
                  eyes with 65% and 72% sensitivity and specificity, respectively, similar to two glaucoma experts. 
               

               Li et al. claim that DL algorithms could be able to identify patterns between close and distant test sites that physicians
                  are blind to.33 "Archetypal analysis" is a corner learning technique that was developed as an unsupervised approach free from potential biases
                  arising from clinical experience to objectively identify regional patterns of loss. In order to identify archetypes or broad
                  patterns of visual loss, this technique used unsupervised learning on Humphrey visual fields.
               

               Through archetypal analysis, the visual field is regionally stratified, and coefficients are generated to quantify individual
                  regional patterns of loss. Individuals exhibiting an archetype indicative of advanced glaucoma displayed higher cup-disc ratios
                  (CDRs) compared to those with significant weighting factors for other archetypes.34  In instances where a glaucoma hemifield test produced two consecutive "outside normal limit" results, archetypal analysis
                  proved beneficial in predicting the return to normalcy of the test. This anticipation was facilitated by the consideration
                  of lens rim artifacts and non-glaucomatous loss patterns within the analysis.35 
               

               In a prior study conducted by Bowd et al., it was discovered that an  ANN, when integrated with both structural data (including
                  cup-to-disc ratio, rim area, cup volume, and nerve fiber layer height) and global visual field (VF) indices (such as mean
                  defect, corrected loss variance, and short-term variation), exhibited an accuracy rate of 88% in identifying glaucomatous
                  eyes. This accuracy rate surpassed that of the same ANN trained solely on either structural or functional data.36 
               

            

            
                  Age-related macular degeneration (AMD)

               Roughly 9% of blindness worldwide is caused by age-related macular degeneration (AMD), the most common cause of vision impairment
                  in developed countries.37 Projections indicate that global AMD patient numbers were anticipated to reach 196 million in 2020, with a projected increase
                  to 288 million by 2040. Late AMD manifests in two primary forms: geographic atrophy (GA) and neovascular AMD (nAMD).38 
               

               Numerous studies have delved into the utilization of DL in AMD. Burlina et al. tackled a 4-class AMD severity classification
                  task (comprising no, early, intermediate, and advanced stages) employing universal features and transfer learning techniques.
                  According to their findings, the accuracy for machine grading stood at 79.4%, while physician grading accuracy was slightly
                  lower at 75.8%.39 Grassmann et al. employed a random forest approach to predict the 9-step AREDS (Age-Related Eye Disease Study) severity scale
                  within an AREDS test set. Remarkably, their model surpassed human graders, achieving an overall accuracy of 63.3%.40 In a different study, Chen Q et al. created four deep learning models, each of which was in charge of identifying a distinct
                  attribute. They then trained each model independently using a multi-tasking approach. The accuracy of the model outperformed
                  the state-of-the-art model by more than 10 times, according to evaluation results on the AREDS and AREDS2 datasets.41 
               

               Lee et al. developed a system to categorize OCT images as AMD or normal. The images were connected to the clinical data points
                  in the electronic health record, and the International Classification of Diseases, Ninth Edition (ICD-9) diagnosis codes were
                  used to create gold-standard labels. The model exhibited a precision of 93.45% with an impressive AUROC of 97.45% at the patient
                  level.42 RPD (Reticular Pseudodrusen) was found to significantly enhance the probability of progression to GA in recent analyses of
                  AREDS2 data. On the other hand, the risk of neovascular AMD was not. Yim et al. devised a system that demonstrated a sensitivity
                  of 80% and a specificity of 55% in predicting the progression of wet AMD in the second eye using OCT data. Notably, this system
                  outperformed five out of six experts in the field.43 
               

               Dong et al. conducted a thorough investigation and meta-analysis to assess AI's efficacy in fundus image detection of AMD.
                  The quantitative synthesis and systematic review comprised 13 of the 19 selected studies. In every study, human graders served
                  as the reference standard. With a 95% confidence interval (CI) spanning from 0.979 to 0.987, the AUROC was found to be 0.983.
                  The specificity was 0.90 (95% CI:0.90-0.91), the sensitivity was 0.88 (95% CI:0.88-0.88), the diagnostic odds ratio (DOR)
                  was 0.90, and the total DOR was 275.27 (95% CI:158.43-478.27). Their findings suggest that AMD may be identified by AI in
                  color fundus pictures, supporting the idea that using AI-based automated techniques to diagnose AMD is beneficial.44 
               

            

            
                  Retinopathy of prematurity (ROP)

               Retinopathy of Prematurity (ROP) accounts for 6–18% of juvenile blindness globally. The main determinant of therapy selection
                  is the existence of plus disease, which is demonstrated by the dilatation and tortuosity of the retinal arteries. However,
                  the clinical diagnosis of plus illness varies widely and is highly subjective. With feature-extraction based modalities like
                  ROP Tool, Retinal Image Multi-Scale Analysis (RISA), Vessel Map, and Computer Assisted Image Analysis of the Retina, AI in
                  ROP screening began to take shape. The development of completely AI-based methods for ROP screening like  CNN, Support Vector
                  Machine (SVM), Machine Learning (ML), and DL was subsequently made possible by these advancements.45 
               

               Researchers used a dataset of 5,511 retinal pictures to train a deep convolutional neural network (U-net CNN) in order to
                  investigate the use of DL in the autonomous detection of Plus disease. One expert who supplied the clinical diagnosis (normal,
                  pre-plus disease, or plus disease) and three more experts who reviewed the photos agreed to develop the reference standard
                  diagnostic (RSD) for each image. These images were contributed by eight academic institutions participating in the Imaging
                  and Informatics in ROP (i-ROP) cohort investigation. The performance of the deep learning method was evaluated using eight
                  ROP specialists with a collective experience exceeding ten years in the field.
               

               Brown et al. discovered that the algorithm attained a sensitivity of 93% and a specificity of 94% for diagnosing plus disease
                  in a different test set that included 100 retinal pictures. Furthermore, the system demonstrated 100% sensitivity and 94%
                  specificity for the diagnosis of pre-plus disease or worse.46 
               

               In a cohort research, Taylor et al. examined the viability of measuring the severity of ROP and tracking the disease's evolution
                  over time in 871 newborns who had 5,255 clinical tests performed. Researchers created a quantified ROP vascular severity score
                  by analyzing posterior pole pictures using a deep learning-based plus disease algorithm. This score attempted to distinguish
                  between the mean severity of eyes that did not require treatment and those who subsequently proceeded to require ROP treatment.47

            

         

         
               Pros and Perils of AI in Ophthalmology

            Artificial Intelligence serves as a double-edged sword. On the one hand, it can outperform doctors, help to diagnose what
               is presently undiagnosable, help to treat what is presently untreatable, to recognize images that are presently unrecognizable,
               predict the unpredictable, classify the unclassifiable, decrease the workflow inefficiencies, decrease hospital admissions
               and readmissions, increase medication adherence, decrease patient harm, decrease or eliminate misdiagnosis and provide personalised,
               high-precision medicine (“Pharmacogenomics”). 48 
            

            However, integrating deep learning-based systems into clinical settings poses several intrinsic challenges. Workflow integration,
               the requirement for improved explainability and interpretability, workforce education,49 oversight and regulation to maintain "Data Privacy," problem identification and prioritization of sectors requiring its application,
               clinician and patient engagement, and quality of data and access are a few of the issues which are serving as stumbleblocks
               in the process.
            

            The World Health Organization has identified six main areas of ethical concern regarding the use of AI in healthcare. These
               include protecting human autonomy, fostering human well-being, safety, public interest, transparency, explainability, and
               intelligibility of AI systems, promoting responsibility and accountability among AI developers and users, infusing inclusivity
               and equity in access to AI-driven healthcare solutions. Furthermore, promoting AI that is responsive and sustainable is also
               highlighted as a critical ethical consideration. These principles serve as guidelines for the responsible development and
               deployment of AI technologies in healthcare.50 
            

            Furthermore, the "black box" nature, characteristic of AI algorithms renders it cumbersome to fathom the metacognition used
               in decision-making in the age of "evidence-based medicine." To some extent, heatmaps and occlusion tests can help comprehend
               how the algorithms work. The same goal should be pursued with other technologies.
            

         

         
               Prospects for the Near Future

            Retinal microvasculature analyses of CVD (Cardiovascular Disease) risk factors (like blood pressure and diabetes), direct
               CVD events (like CVD mortality), retinal features (like retinal vessel calibre), and CVD biomarkers (like coronary artery
               calcium score) may be predicted by the "Google Deep Mind Health" algorithm.51 The future may hold automated cataract grading, congenital cataract and refractive error management, strabismus detection,
               high myopia prediction, and neuro-ophthalmological diagnosis; it may also involve automatically identifying leukocoria in
               children from leisurely smartphone or digital camera photos, and measuring the thicknesses of the inner and outer retinal
               layers to estimate the chances for Alzheimer's disease.52 Additionally, it can make measuring ocular cancer and referable blepharoptosis easier.
            

         

         
               Conclusion

            Indeed, artificial intelligence is a cutting-edge technology with a wide range of possible and present uses in the medical
               profession, especially in ophthalmology. Ophthalmic treatment has been transformed by its help in identifying and treating
               diseases like glaucoma, cataracts, diabetic retinopathy (DR), retinopathy of prematurity (ROP), age-related macular degeneration
               (AMD) and Keratoconus. Additionally, AI has significantly improved the accuracy of pre- and post-operative assessments for
               cataract and refractive surgeries.
            

            Looking ahead, AI holds promise for predicting systemic disorders through ocular measures. However, it's essential to approach
               the evaluation of AI benefits with caution and ensure that the human element of supervision is integrated. While AI offers
               remarkable advancements, human oversight remains crucial to ensure patient safety, ethical considerations, and the delivery
               of high-quality healthcare. Balancing the capabilities of AI with the expertise of healthcare professionals is key to leveraging
               this technology effectively while upholding patient care standards.
            

         

         
               Sources of Funding

            None.

         

         
               Conflict of Interest

            None.

         

      

      
         
               References

            
                  
                  
                     
                        1 
                              

                     

                     Benet, D & Pellicer-Valero, OJ,   (2022). Artificial intelligence: the unstoppable revolution in ophthalmology. Surv Ophthalmol, 67(1), 252–70.
                     

                  

                  
                     
                        2 
                              

                     

                     Jiang, F, Jiang, Y, Zhi, H, Dong, Y, Li, H & Ma, S,   (2017). Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol, 2(4), 230–43.
                     

                  

                  
                     
                        3 
                              

                     

                     Tong, Y, Lu, W, Yu, Y & Shen, Y,   (2020). Application of machine learning in ophthalmic imaging modalities. Eye Vis (Lond), 7, 22.
                     

                  

                  
                     
                        4 
                              

                     

                     Lecun, Y, Bengio, Y & Hinton, G,   (2015). Deep learning. Nature, 521(7553), 436–44.
                     

                  

                  
                     
                        5 
                              

                     

                     Gunasekeran, DV, DSWTing, , Tan, GSW & Wong, TY,   (2020). Artificial intelligence for diabetic retinopathy screening, prediction and management. Curr Opin Ophthalmol, 31(5), 357–65.
                     

                  

                  
                     
                        6 
                              

                     

                     Patel, VL, Shortliffe, EH, Stefanelli, M, Szolovits, P, Berthold, MR & Bellazzi, R,   (2009). The coming of age of artificial intelligence in medicine. Artif Intell Med, 46(1), 5–17.
                     

                  

                  
                     
                        7 
                              

                     

                     Fauw, J De, Ledsam, J R, Romera-Paredes, B, Nikolov, S, Tomasev, N & Blackwell, S,   (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med, 24(9), 1342–50.
                     

                  

                  
                     
                        8 
                              

                     

                     Sayres, R, Taly, A, Rahimy, E, Blumer, K, Coz, D & Hammel, N,   (2019). Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy.
                        Ophthalmology, 126(4), 552–64.
                     

                  

                  
                     
                        9 
                              

                     

                     Varadarajan, AV, Bavishi, P, Ruamviboonsuk, P, Chotcomwongse, P, Venugopalan, S & Narayanaswamy, A,   (2020). Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep
                        learning. Nat Commun, 11(1), 130.
                     

                  

                  
                     
                        10 
                              

                     

                     Krause, J, Gulshan, V, Rahimy, E, Karth, P, Widner, K & Corrado, G S,   (2018). Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic
                        Retinopathy. Ophthalmology, 125(8), 1264–72.
                     

                  

                  
                     
                        11 
                              

                     

                     Peng, Y, Dharssi, S, Chen, Q, Keenan, TD, Agrón, E & Wong, WT,   (2019). DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration
                        Severity from Color Fundus Photographs. Ophthalmology, 126(4), 565–75.
                     

                  

                  
                     
                        12 
                              

                     

                     Caporossi, A, Mazzotta, C, Baiocchi, S & Caporossi, T,   (2010). Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena
                        eye cross study. Am J Ophthalmol, 149(4), 585–93.
                     

                  

                  
                     
                        13 
                              

                     

                     Klein, SR, Epstein, RJ, Randleman, JB & Stulting, RD,   (2006). Corneal ectasia after laser in situ keratomileusis in patients without apparent preoperative risk factors. Cornea, 25(4), 388–403.
                     

                  

                  
                     
                        14 
                              

                     

                     Randleman, JB, Trattler, WB & Stulting, RD,   (2008). Validation of the Ectasia Risk Score System for preoperative laser in situ keratomileusis screening. Am J Ophthalmol, 145(5), 813–8.
                     

                  

                  
                     
                        15 
                              

                     

                     Shi, C, Wang, M, Zhu, T, Zhang, Y, Ye, Y & Jiang, J,   (2020). Machine learning helps improve diagnostic ability of subclinical keratoconus using Scheimpflug and OCT imaging modalities.
                        Eye Vis (Lond), 7, 48.
                     

                  

                  
                     
                        16 
                              

                     

                     Kamiya, K, Ayatsuka, Y, Kato, Y, Fujimura, F, Takahashi, M & Shoji, N,   (2019). Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography:
                        a diagnostic accuracy study. BMJ Open, 9(9), 31313.
                     

                  

                  
                     
                        17 
                              

                     

                     Fariselli, C, Vega-Estrada, A, Arnalich-Montiel, F & Alio, JL,   (2020). Artificial neural network to guide intracorneal ring segments implantation for keratoconus treatment: a pilot study.
                        Eye Vis (Lond), 7, 20.
                     

                  

                  
                     
                        18 
                              

                     

                     Cartes, C, López, D, Salinas, D, Segovia, C, Ahumada, C & Pérez, N,   (2019). Dry eye is matched by increased intrasubject variability in tear osmolarity as confirmed by machine learning approach.
                        Arch Soc Esp Oftalmol, 94(7), 337–42.
                     

                  

                  
                     
                        19 
                              

                     

                     Aristodemou, P, Cartwright, NEK, Sparrow, JM & Johnston, RL,   (2011). Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with
                        biometry by partial coherence interferometry. J Cataract Refract Surg, 37(1), 63–71.
                     

                  

                  
                     
                        20 
                              

                     

                     Ladas, JG, Siddiqui, AA, Devgan, U & Jun, AS,   (2015). A 3-D “Super Surface” Combining Modern Intraocular Lens Formulas to Generate a “Super Formula” and Maximize Accuracy.
                        JAMA Ophthalmol, 133(12), 1431–6.
                     

                  

                  
                     
                        21 
                              

                     

                     Gatinel, D, Debellemanière, G, Saad, A, Dubois, M & Rampat, R,   (2021). Determining the Theoretical Effective Lens Position of Thick Intraocular Lenses for Machine Learning-Based IOL Power
                        Calculation and Simulation. Transl Vis Sci Technol, 10(4), 27.
                     

                  

                  
                     
                        22 
                              

                     

                     Abràmoff, MD, Lavin, PT, Birch, M, Shah, N & Folk, JC,   (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care
                        offices. NPJ Digit Med, 1, 39.
                     

                  

                  
                     
                        23 
                              

                     

                     Tufail, A, Kapetanakis, VV, Salas-Vega, S, Egan, C, Rudisill, C & Owen, CG,   (2016). An observational study to assess if automated diabetic retinopathy image assessment software can replace one or
                        more steps of manual imaging grading and to determine their cost-effectiveness. Health Technol Assess, 20(92), 1–72.
                     

                  

                  
                     
                        24 
                              

                     

                     Sosale, B, Aravind, S R, Murthy, H, Narayana, S, Sharma, U & Gowda, Sgv,   (2020). Mobile-based Artificial Intelligence Algorithm in the detection of Diabetic Retinopathy (SMART) study. BMJ Open Diabetes Res Care, 8(1), e000892.
                     

                  

                  
                     
                        25 
                              

                     

                     Tham, YC, Li, X, Wong, TY, Quigley, HA, Aung, T & Cheng, CY,   (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis.
                        Ophthalmology, 121(11), 2081–90.
                     

                  

                  
                     
                        26 
                              

                     

                     Harwerth, RS, Carter-Dawson, L, Shen, F, Smith, EL & Crawford, ML,   (1999). Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci, 40(10), 2242–50.
                     

                  

                  
                     
                        27 
                              

                     

                     Bowd, C, Hao, J, Tavares, IM, Medeiros, FA, Zangwill, LM & Lee, TW,   (2008). Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and
                        glaucomatous eyes. Invest Ophthalmol Vis Sci, 49(3), 945–53.
                     

                  

                  
                     
                        28 
                              

                     

                     Muhammad, H, Fuchs, TJ, Cuir, ND, Moraes, CGD, DM Blumberg & Liebmann, JM,   (2017). Hybrid Deep Learning on Single Wide-field Optical Coherence tomography Scans Accurately Classifies Glaucoma Suspects.
                        J Glaucoma, 26(12), 1086–94.
                     

                  

                  
                     
                        29 
                              

                     

                     Park, K, Kim, J & Lee, J,   (2019). Visual Field Prediction using Recurrent Neural Network. Sci Rep, 9(1), 8385.
                     

                  

                  
                     
                        30 
                              

                     

                     Sedai, S, Antony, B, Ishikawa, H, Wollstein, G & Schuman, JS,   (2020). Forecasting Retinal Nerve Fiber Layer Thickness from Multimodal Temporal Data Incorporating OCT Volumes. Ophthalmol Glaucoma, 3(1), 14–24.
                     

                  

                  
                     
                        31 
                              

                     

                     Christopher, M, Bowd, C, Belghith, A, Goldbaum, MH, Weinreb, RN & Fazio, MA,   (2020). Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal
                        Nerve Fiber Layer Thickness Maps. Ophthalmology, 127(3), 346–56.
                     

                  

                  
                     
                        32 
                              

                     

                     Mayro, EL, Wang, M, Elze, T & Pasquale, LR,   (2020). The impact of artificial intelligence in the diagnosis and management of glaucoma. Eye (Lond), 34(1), 1–11.
                     

                  

                  
                     
                        33 
                              

                     

                     Christopher, M, Belghith, A, Weinreb, RN, Bowd, C, Goldbaum, MH & Saunders, LJ,   (2018). Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans
                        Predict Glaucoma Progression. Invest Ophthalmol Vis Sci, 59(7), 2748–56.
                     

                  

                  
                     
                        34 
                              

                     

                     Niwas, SI, Lin, W, Bai, X, Kwoh, CK, Kuo, CCJ & Sng, CC,   (2016). Automated anterior segment OCT image analysis for Angle Closure Glaucoma mechanisms classification. Comput Methods Programs Biomed, 130, 65–75.
                     

                  

                  
                     
                        35 
                              

                     

                     Porporato, N, Tun, TA, Baskaran, M, Wong, DWK, Husain, R & Fu, H,   (2022). Towards 'automated gonioscopy': a deep learning algorithm for 360° angle assessment by swept-source optical coherence
                        tomography. Br J Ophthalmol, 106(10), 1387–92.
                     

                  

                  
                     
                        36 
                              

                     

                     Goldbaum, MH, Sample, PA, White, H, Côlt, B, Raphaelian, P & Fechtner, RD,   (1994). Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci, 35(9), 3362–73.
                     

                  

                  
                     
                        37 
                              

                     

                     Li, F, Wang, Z, Qu, G, Song, D, Yuan, Y & Xu, Y,   (2018). Automatic differentiation of Glaucoma visual field from non-glaucoma visual field using deep convolutional neural
                        network. BMC Med Imaging, 18(1), 35.
                     

                  

                  
                     
                        38 
                              

                     

                     Elze, T, Pasquale, LR, Shen, LQ, Chen, TC, Wiggs, JL & Bex, PJ,   (2015). Patterns of functional vision loss in glaucoma determined with archetypal analysis. J R Soc Interface, 12(103), 20141118.
                     

                  

                  
                     
                        39 
                              

                     

                     Cai, S, Elze, T, Bex, PJ, Wiggs, JL, Pasquale, LR & Shen, LQ,   (2017). Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Patients from a Glaucoma Clinic.
                        Curr Eye Res, 42(4), 568–74.
                     

                  

                  
                     
                        40 
                              

                     

                     Wang, M, Pasquale, LR, Shen, LQ, Boland, MV, Wellik, SR & Moraes, CGD,   (2018). Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma. Ophthalmology, 125(3), 352–60.
                     

                  

                  
                     
                        41 
                              

                     

                     Congdon, N, O’colmain, B, Klaver, CCW, Klein, R, Muñoz, B & Friedman, DS,   (2004). Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol, 122(4), 477–85.
                     

                  

                  
                     
                        42 
                              

                     

                     Wong, WL, Su, X, Li, X, Cheung, CMG, Klein, R & Cheng, CY,   (2014). Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic
                        review and meta-analysis. Lancet Glob Health, 2(2), 106–16.
                     

                  

                  
                     
                        43 
                              

                     

                     Burlina, P, Pacheco, KD, Joshi, N, Freund, DE & Bressler, NM,   (2017). Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer
                        learning for automated AMD analysis. Comput Biol Med, 82, 80–6.
                     

                  

                  
                     
                        44 
                              

                     

                     Grassmann, F, Mengelkamp, J, Brandl, C, Harsch, S, Zimmermann, ME & Linkohr, B,   (2018). A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular
                        Degeneration from Color Fundus Photography. Ophthalmology, 125(9), 1410–20.
                     

                  

                  
                     
                        45 
                              

                     

                     Chen, Q, Peng, Y, Keenan, T, Dharssi, S, Agro, NE & Wong, WT,   (2019). A multi-task deep learning model for the classification of Age-related Macular Degeneration. AMIA Jt Summits Transl Sci Proc, 2019, 505–14.
                     

                  

                  
                     
                        46 
                              

                     

                     Lee, CS, Baughman, DM & Lee, AY,   (2017). Deep learning is effective for the classification of OCT images of normal versus Age-related Macular Degeneration.
                        Ophthalmol Retina, 1(4), 322–7.
                     

                  

                  
                     
                        47 
                              

                     

                     Yim, J, Chopra, R, Spitz, T, Winkens, J, Obika, A & Kelly, C,   (2020). Predicting conversion to wet age-related macular degeneration using deep learning. Nat Med, 26(6), 892–9.
                     

                  

                  
                     
                        48 
                              

                     

                     Dong, L, Yang, Q, Zhang, R H & Wei, WB,   (2021). Artificial intelligence for the detection of age-related macular degeneration in color fundus photographs: A systematic
                        review and meta-analysis. EClinicalMedicine, 35, 100875.
                     

                  

                  
                     
                        49 
                              

                     

                     Wittenberg, LA, Jonsson, NJ, Chan, RVP & Chiang, MF,   (2012). Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity. J Pediatr Ophthalmol Strabismus, 49(1), 11–9.
                     

                  

                  
                     
                        50 
                              

                     

                     Brown, JM, Campbell, JP, Beers, A, Chang, K, Ostmo, S & Chan, RVP,   (2018). Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol, 136(7), 803–10.
                     

                  

                  
                     
                        51 
                              

                     

                     Taylor, S, Brown, JM, Gupta, K, Campbell, JP, Ostmo, S & Chan, RVP,   (2019). Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning.
                        JAMA Ophthalmol, 3(9), 1022–8.
                     

                  

                  
                     
                        52 
                              

                     

                     Topol, EJ,   (2019). High-performance medicine: the convergence of human and artificial intelligence. Nat Med, 25(1), 44–56.
                     

                  

               

            

         

      

      

   EPUB/nav.xhtml

    
      Artificial intelligence in ophthalmology: Current status 


      
        		
          Content
        


      


    
  

